PREPARATION OF FUNCTIONALIZED HYDROINDOL-3-OLS *VIA* **TANDEM AZA-COPE REARRANGEMENT-MANNICH CYCLIZATIONS. FORMAL TOTAL SYNTHESIS OF (+)-6a-EPIPRETAZETTJNE AND RELATED ALKALOIDS**

Larry E. Overman^{*} and Hanno Wild¹ Department of Chemistry, University of California Irvine, California 927 17

Summary: Key steps in this approach to *amaryllidaceae* alkaloids containing oxidation at the B-position of the pyrroline ring are (a) copper(H)-promoted rearrangement of aminocyclopentanol **11 to** afford the 3-silylhydroindole 12, and (b) oxidation of 12 by the general procedures of Kumada and Fleming to give the cis-3a-aryl-3-hydroxyhexahydroindolone 13 in 71% overall yield from **11.**

We have reported an efficient method for preparing cis-3a-arylhydroindoles 2 that involves a tandem aza-Cope rearrangement-Mannich cyclization reaction (eq 1) as its key element.² This chemistr

constitutes a general approach for alkaloid synthesis, since the cis-3a-arylhydroindole ring system is found in a number of alkaloids, and has been utilized by us to achieve total syntheses of *amaryllidaceae,3* aspidosperma,⁴ and *melodinus*⁵ alkaloids. A number of alkaloids, including the most pharmacologically active members of the crinine class of *amaryllidaceae* alkaloids (e.g. 3 and 4),⁶ contain cis-3a-arylhydroindole rings that are oxidized at the B-carbon of the pyrrolidine ring.⁷ Not surprisingly, oxygen functionality of this type is not compatible with the cationic aza-Cope rearrangement-Mannich cyclization reaction (eq 1, X=OH or OR).⁸ We have investigated, therefore, the transformation illustrated in eq 1

SCHEME I

(a) Bu₃SnSiMe₂Ph, Pd(Ph₃P)₄, THF, 60°, 8h (95%); (b) n-BuLi, THF, -78°C, 1h; (c) 0°C, 5 min, CoCl₃; 9, -78°C (25% from 8); (d) Cu(OTf)₂, THF, reflux, 2h (94%); (e) HBF₄-OEt₂, CH₂Cl₂, rt, 2h; H₂O₂, KF, DMF, 60°C, 7h (76%).

where X is a silyl substituent, since Kumada⁹ and Fleming¹⁰ have developed versatile sequences for the conversion of C-SiR₃ \rightarrow C-OH. In this communication we report that the "hydroxyl equivalency" of the PhMe₂Si group¹⁰ can be exploited to prepare oxidized cis-3a-arylhydroindoles 2 (X= α -OH) by the aza-Cope rearrangement-Mannich cyclization strategem. Specifically, we describe the synthesis of 6 (see Scheme II), a late intermediate in incisive total syntheses of $(+)$ -6a-epipretazettine and $(+)$ -tazettine achieved by the Danishefsky group.¹¹

Our investigations began with silylstannane 8^{12a} which was prepared from (3.4methylenedioxy)phenylacetylene $(7)^{13}$ and (dimethylphenylsilyl)tributylstannane by the general method of Chenard and Van Zyl.¹⁴ We initially examined the reaction of readily available aminocyclopentanone 9^3 with the vinyllithium¹⁵ and vinylcerium¹⁶ reagents derived from 8 in the hope of preparing a cyclization substrate with the *trans*-orientation of aryl and silicon functionality. Unfortunately, enolization of 9 predominated under all conditions examined, presumably reflecting the steric bulk of these organometallic intermediates which have the silyl group *cis* to the metal and the well-known susceptibility of cyclopentanones to deprotonation.¹⁷ On the other hand, the (E) -cerium reagent, which could be formed from 8 as a 1:l mixture of stereoisomers by equilibration of the corresponding lithium intermediate at 0°C, reacted with 9 at -78°C in modest yield (41% based on consumed 9, 25% actual yield) to provide a single adduct 11^{12a} whose stereochemistry was ascertained by ¹H NMR NOE experiments.

(a) Me₃SiOTf, NEt₃, CH₂Cl₂, O°C, 1h (95%); (b) PhSeCI, CH₂Cl₂, O°C, 1h (78%); (c) iBu₂AlH, toluene, -78°C, 15 min (81%); (d) *m*-CIC₆H₄CO₃H, CH₂Cl₂, -78°C, 45 min; xylene, reflux, 15 min (61%); (e) (CH₃SO₂)₂O, NEt₃, THF, 0°C, 20 min; MeOH, **NEt₃, reflux, 15 min; n-Bu₄NF, THF, rt, 15 mln (25%).**

The **key** rearrangement of 11 was accomplished by treatment with 2 equiv of coppcr(II)triflate in refluxing tetrahydrofuran (THF) to give the silyl hydroindolone $12^{12a,b}$, mp 129°C, in 94% yield. Conversion of 12 to the fluorosilane,¹⁰ followed by oxidation of this intermediate at 60°C with 20 equiv of 30% H₂O₂ in the presence of 5 equiv of KF^9 gave cleanly the desired hydroxylated hydroindolone $13^{12a,C}$ in 76% yield. Significantly, the basic nitrogen did not require protection during this oxidative transformation.

The conversion of 13 to the Danishefsky intermediate 6^{11} is summarized in Scheme II. Of note in this sequence was the reduction of the selenoketone 14 with i-Bu₂AlH which provided exclusively the α alcohol 15.^{12a,18} The steric bulk of the angular aryl and α -phenylseleno groups is apparently sufficient to direct the reducing agent to the concave face of this cis-fused bicyclic ketone. The conversion of 16^{12a} to 6 was accomplished by methanolysis of the allylic mesylate intermediate following a general strategy defined earlier by Whitlock¹⁹ and Danishefsky.¹¹ Hydroindole 6 prepared in this fashion was indistinguishable $({}^{1}H$ NMR, IR, mass spec, and TLC comparisons in three solvents) with an authentic sample.

In summary, the efficient (71% overall yield) two-step conversion of aminocyclopentanol 11 to the cis -3a-aryl-3-hydroxyhexahydroindolone 13 demonstrates that a silicon substituent can be employed as an alcohol surrogate in the stereocontrolled synthesis of hydroxylated hydroindoles by the tandem ara-Cope rearrangement-Mannich cyclization method. For this sequence to be a practical route to **these** intermediates, more efficient methods for assembling the silicon-containing rearrangement precursors will be required.

Acknowledgment. The support of this research by the Alexander von Humboldt Foundation and PHS Grant NS-12389 is gratefully acknowledged. We particularly wish to thank Professor Danishefsky for providing a comparison sample of 6.

REFERENCES AND NOTES

- 1. Feodor Lynen Postdoctoral Fellow at the Alexander von Humboldt Foundation, 1987-1988.
- 2. Jacobsen, E.J.; Levin, J.; Overman, L.E. *J. Am. Chem. Sot.* **1988, I IO, 4329** and references cited therein.
- 3. Overman, L.E.; Mendelson, L.T.; Jacobsen, E.J. J. *Am. Chem. Sot.* 1983, 105, 6629. Overman, L.E.; Sugai, S. *Helv.* **Chim.** *Actu* **198.5, 68, 745.**
- 4. **Overman,** L.E.; Sworin, M.; Burk, R. M. J. *Org. Chem.* **1983,48,2685.**
- 5. Overman, LE.; Robichaud, A.J.; Robertson, G. to be submitted.
- 6. Pretazettine (3) exhibits a broad biological profile including activity against Rauscher leukemia, while cavinine $(1,2-\beta)$ -epoxyambelline 4) is an immunostimulant.⁷
- 7. For a recent authoritative review covering structure, synthesis and biological activity of *amaryllidaceae* alkaloids, see Martin, S.F. *Alkaloids(N.Y.) 1987,30, 252.*
- 8. Elimination of X predominates, see Okazaki, M. *Ph.D. Thesis,* University of California, Irvine, 1987.
- 9. Tamaro, K.; Ishida, N.; Tanaka, T.; Kumada, M. *Organometallics* 1983, 2, 1694.
- 10. Fleming, I.; Henning, R.; Plaut, H, *J. Chem. Sot. Chem. Commun. 1984,29.*
- 11. Danishefsky, S.; Morris, T.; Mullen, G.; Gammill, R. J. Am. Chem. Soc. 1982, 104, 7591.
- 12. (a) All new compounds exhibited spectroscopic properties $({}^{1}H$ NMR, ^{13}C NMR, IR, high resolution MS) in accord with their assigned structures. (b) The molecular composition of this intermediate was confirmed by combustion analysis. (c) Characterization data for 13: ¹H NMR (300 MHz, CDCl₃) δ 4.79 (dd, J= 6.1, 1.9 Hz, H_{3R}), 3.52 (dd, J = 10.6, 6.2 Hz, H_{2R}), 3.29 (broad s, H_{7a}), 2.28 (s, NCH₃), 2.24 (dd, J = 10.7, 2.0 Hz, H_{2a}); ¹³C NMR (75 MHz, CDCl₃) 210.3, 148.8, 147.4, 128.8, 121.8, 109.2, 108.8, 101.9, 72.8, 68.0, 65.8, 62.1, 39.7, 39.4, 22.6, 22.0; IR (CCl₄) 3596, 1708 cm⁻¹; MS (El) m/z 289.1300 (78%, 289.1314 calcd. for $C_{16}H_{10}NO₄$).
- 13. Prepared in 78% yield from piperonal by the general method of Corey and Fuchs: Corey, E.J.; Fuchs, P.L. *Tetrahedron Lett. 1972, 3769.*
- 14. Chenard, B.L.; Van Zyl, C.M. *J. Org. Chem. 1986,51, 3561.*
- IS. In contrast to the 2-silyl-1-phenylvinyl lithium reagents described in ref 14, this vinyllithium intermediate was configurationally stable at -78°C for 2.5 h.
- 16. Imamoto, T.; Sugiura, Y.; Takiyama, N. *Tetrahedron L*ett. **1984**, 25, 4233.
- 17. The (E) -vinyllithium reagent derived from 8 was successfully added to cyclohexanone to give the corresponding tertiary alcohol in 46% yield. Enolization with 9 was confirmed by quenching reaction mixtures with D_2O .
- 18. The stereostructure of 15 followed from its 500 MHz ¹H NMR spectrum (CDCl₃): δ 4.46 (dd, J = 5.4, 2.5 Hz, H₃ $_8$), 3.93 (dd, J = 11.6, 4.1 Hz, H₄₈), 3.13 (broad s, H₅₈), 2.60 (d, J = 11.7 Hz, OH).
- 19. Whitlock, H.W.; Smith, G.L. *J. Am. Chem. Soc.* 1967, 89, 3600.

(Received in **USA 5 October 1988)**